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In my work on the VCP program, it was necessary to collect the equations describing the various nose
cone shapes. This collection aso brought together some nomenclature and nose cone information that |
have never seen gathered in a single source, so I've tried to tidy it up and present it here for your

amusement.

GENERAL DIMENSIONS

In al of the following nosecone shape
equations, L is the overal length of the
nosecone, and R isthe radius of the base of
the nosecone. vy isthe radius a any point
X, & X varies from 0, at the tip of the
nosecone, to L. The equations define the
2-dimensiona profile of the nose shape.

The full body of revolution of the nosecone
is formed by rotating the profile around the
centerline (/\). Note that the equations

x=0
y=0

X=L
Dimensionsused intheequations v =R

describe the ‘perfect’ shape; practical nosecones are often blunted or truncated for manufacturing or
aerodynamic reasons (see the following section on ‘ Bluffness Ratio’).

While a prectical nose cone used in modeling usually includes a shoulder for mounting to a tube, that
aspect will be ignored here, as it has no aerodynamic effects, and its mass and inertial contributions are

easily handled separately.

NOSE CONE SHAPE EQUATIONS

CONICAL

A very common nose cone shape is a
simple cone. This shape is often chosen
for its ease of manufacture, and is aso
often  (mis)chosen for its drag
characteristics. The sides of a conical
profile are straight lines, so the diameter
equationissimply,
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Conical nosecone

Cones are sometimes defined by their ‘haf angle’, f :

fztm‘lgdég and, y=xtanf

Cones are a so special cases of the Power and Parabolic series, as shown in the following sections.




BI-CONIC

A Bi-Conic nosecone shape is smply a
cone stacked on top of afrustrum of a cone
(commonly known to modelers as a
‘conical transition section’ shape), where
the base of the upper cone is equa in
diameter to the smaller diameter of the
frustrum.

Bi-Conic
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POWER SERIES

The Power Series includes the shape
commonly known to modelers as a
‘parabolic’ nose cone. (Oddly enough, the
shape correctly known as a parabolic nose
cone is a member of the Parabolic Series,
and is something completely different.)
The Power Series shape is characterized by
its (usudly) blunt tip, and by the fact that its
base is not tangent to the body tube. There

Power Series Dwg TBD

is dways a discontinuity at the nosecone-body joint that looks distinctly non-aerodynamic; however the
shape is sometimes modified at the base to smooth out this discontinuity. Often people spesk of a
parabola shape, when what they are actually looking for is an eliptical shape, which istangent at its base.
It isalso interesting to note that both a flat-faced cylinder and a cone are shapes that are members of the
Power Series

The Power series nose shape is generated by rotating a parabola about its axis. The base of the nosecone
is parallel to the lattus rectum of the parabola, and the factor ‘n’ controlsthe ‘ bluntness' of the shape. As
n decreases towards zero, the Power Series nose shape becomes increasingly blunt; at values of n above
about .7, the tip becomes sharp.

For 0ENEL, y:Rg%%

Wheree n=1 fora CONE
n=.75 fora ¥POWER
n=.5 fora “POWER (PARABOLA)
n=0 fora CYLINDER



TANGENT OGIVE

Next to asimple cone, the Tangent Ogive shape
is the most familiar in hobby rocketry. The
profile of this shape is formed by a segment of
acircle such that the rocket body is tangent to
the curve of the nosecone t its base; and the
base is on the radius of the circle.  The
popularity of this shape is largely due to the
ease of constructing its profile, since that
profileisjust a segment of acircle that can be
smply drawn with acompass.

The radius of the circle that forms the ogive is OdiveRadius '
caled the Ogive Radius, r, and it is related to
the length and base radius of the nose cone:

R? + |2
2R

r =

The radius y at any point x, as x varies from 0

toLis:
y=4r % (x- L) +(R-r)

The nosecone length, L, must be equal to, or less than the Ogive Radius. |If they are equal, then the shape
isahemisphere.

SECANT OGIVE

The profile of this shape is also formed by a
segment of acircle, but the base of the shape
is not on the radius of the circle defined by

the ogive radius. The rocket body will not be
tangent to the curve of the nose at its base.

The Ogive Radius, r, is not determined by R
and L (asit isfor atangent ogive), but rather
is one of the factors to be chosen to define
the nose shape. If the chosen Ogive Radius of
a Secant Ogive is greater than the Ogive Radius of a Tangent Ogive with the same R and L, then the
resulting Secant Ogive appears as a Tangent Ogive with a portion of the base truncated; figuren




R? + |2 2RO &/1% + R?0
>——— ad, a= tan'lé—g - cos‘lﬁz
2R L3 2r &

Thentheradiusy at any point x, asx variesfromOtoL is:
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If the chosen r is less than the Tangent Ogive
r, then the result will be a Secant Ogive that
bulges out to a maximum diameter that is
greater than the base diameter; figure n+1. The
classic example of this shape is the nose cone
of the Honest John. Also, the chosen ogive
radius must be greater than twice the length of
the nose cone.

R* +L°
2 2R
Programming note: The inverse cosine function, required in the equations above, is not directly

supported by most programming languages. The derived function for the inverse cosine, in BASIC syntax,
isasfollows:

cos }(2) = atn(— z/sr(-z*z+ 1)) +2* an(1) Wwhere atn(1) is pi/4 radians.
Arcsin(z) = an(z/sar(-z+ z+1))



ELLIPTICAL

The profile of this shape is one-hdf of an
dlipse, with the magjor axis being the
centerline and the minor axis being the
base of the nosecone. A rotation of afull
elipse about its magjor axis is caled a
prolate spheroid, so an elliptica nose
shape would properly be known as a
prolate hemispheroid. This shape is
popular in model rocketry due to the blunt
nose and tangent base, which are attractive
features for subsonic flight. Note however, that this is not a shape normaly found in professiona
rocketry. Note also, that if R equals L, this shapeisahemisphere.

2
y=R 1-?

PARABOLIC SERIES

The Parabolic Series nose shape is not the blunt
shape that is envisioned when people commonly
refer to a ‘parabolic’ nose cone. The Parabolic
Series nose shape is generated by rotating a
segment of a parabolaaround aline parallé to its _'_'[ .
Latus Rectum. Shutup  Beavis. This 7
congtruction is simil(ar to Fhat of the) Tangent Full Parsbola L attus Rectum
Ogive, except that a parabolais the defining shape
rather than a circle. Just as it does on an Ogive,
this construction produces a nose shape with a sharp tip. For the blunt shape typically associated with a
‘parabolic’ nose, seethe Power Series. (And, of course, the ‘parabolic’ shapeis aso often confused with
the elliptical shape.)

Elliptical nosecone
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K’ can vary anywhere between 0 and 1, but the most common values used for nose cone shapes are;

K' =0 fora CONE

K =.5 fora 1/2PARABOLA
K =.75for a 3/4 PARABOLA
K =1 fora PARABOLA

For the case of the full Parabola (K’ =1) the shape is tangent to the body at its base, and the base is on the
axis of the parabola. Valuesof K’ lessthan oneresult ina‘dimmer’ shape, whose appearanceis similar
to that of the secant ogive. The shapeisno longer tangent at the base, and the base is parallel to, but offset
from, the axis of the parabola.



HAACK SERIES

Unlike al of the previous nose cone shapes
the Haack Series shapes are not constructed
from geometric figures. Their shape is
instead mathematically derived for the
purpose of minimizing drag. While the
series is a continuous set of shapes
determined by the vaue of C in the HAACK drawing TBD

equations below, two vaues of C have
particular significance. When C=0, the notation ‘LD’ signifies minimum drag for the given length and
diameter, and when C=1/3, ‘LV’ indicates minimum drag for a given length and volume. Note that the
Haack series nose cones are not perfectly tangent to the body at their base, however the discontinuity is
usudly so dight as to be imperceptible. Likewise, the Haack nose tips do not come to a sharp point, but
are dightly rounded.

sn(2q)
- 26 _R\/q -T+Csn3q

q= — 7

Where; C=1/3 for LV-HAACK
C=0 for LD-HAACK (Thisshapeisaso known asthe Von Karman, or, theVon
Karman Ogive)

NOSECONE CENTER-OFPRESSURE CALCULATIONS

Standard Barrowman values, TIR-33
Normal force on the nose, regardless of shape: (Exception: a‘bulgy’ secant ogive?)

C ) =2
( Na /
Center of Pressure (CP) location of the nose, measured from the base of the noseiis:

L

For aconical nosecone, X n =

3
For an ogive nosecone, X n = 534L (estimatefor L>6R)
L

For a parabolic nosecone, X n = E (Power Series, Parabola)

(Note that these formulas have been altered to place the reference point for any longitudinal
measurements to be the aft end of the nose cone [excluding any shoulder]. Althoughit isthe
most common reference point in most aeronautical texts, the tip of the nose cone becomes a
remarkably inconvenient reference point in practical use.)



These equations for the CP location are al determined from the formula:

= \%
X =—
n A
whereL isthelength, Visthevolume, and A isthe base area of the nose cone. The base areais
simply pR?, and equations are readily available for the volume of acone and parabola. Likewise
we can get an equation for the volume of an dllipse (prolate hemispheroid), and determine aCP
location for that shape:
- 3
For an elliptical nosecone, n = 7

It isinteresting to note that the common value used for the CP position on a Tangent Ogiveis
actualy not simply proportional to length Thevalue of .534L that is commonly used isonly an
approximation that holdswell when L 3 6R. Thisisnormal for most ogive nosecones, but there are many

exceptions. The exact volume of a Tangent Ogiveis:

é L3 ad_6u R? + |2
V=pear?- —-(r - Rjr?sn'c—==y wheeg r =———
Per T3 " o4 2R
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and the equation Xn = A

can be used to determine the CP location. We must remember that when Jm
Barrowman simplified aerodynamic analysis methods for model rocketry use, it was an erawhen
dideruleswerethe, ah, rule. When currently programming applications, it isasimple matter to

use the more rigorous forms.
For some of the other shapes, | do not have convenient expressions for their volumes. However itis
asimple matter to perform anumerical integration on those shapes to determine their volume. Inthe case

of the LV-HAACK and Von Karman shapes, numerical integration on avariety of examples showsthat the
CPlocation is not dependent upon the diameter, but is simply proportional to the length:

For an LV_HAACK nosecone, X n- A37L

For aVVon Karman nosecone, X o = 500L
The secant ogive, and the Power and Parabolic seriesthat aren’t covered by the Conical and
Parabolic CP equations, do not have simple proportional relationships. We must resort to numerical
integration to determine the CP location for each individua instance of these shapes.

Examples

) L
Estimation of an Elliptical nosecone

frustrum of acone




Note that some nose cones occasionally include acylindrical section extending aft of the actual
nose cone shape, usually to expand the payload section of the nose. A cylindrical body section has no
effect on the CP location within the Barrowman Equations. It isonly necessary to adjust the reference
point of the nose shape to account for the cylindrical section.

NOSE CONE DRAG CHARACTERISTICS

Below Mach .8, the nose pressure drag is essentialy zero for al shapes. The mgjor significant factor is
friction drag, whichislargely dependent upon the wetted area, the surface smoothness of that area, and the
presence of any discontinuities in the shape. In strictly subsonic model rockets, a short, blunt, smooth
dliptical shape is usualy best. In the transonic region and beyond, where the pressure drag increases
dramaticaly, the effect of nose shape on drag becomes highly significant. The factors influencing the
pressure drag are the general shape of the nosecone, its fineness ratio, and its bluffness ratio.

Wetted Area - The wetted area is the total surface area of the nosecone shape that is exposed to the
airflow. This does not include the base area of the nosecone. Friction drag on the rocket will depend
upon the total wetted area. Equations for determining wetted area are provided in the appendix, but for a
quick comparison, the following table compares the wetted areas for nosecone shapes of a similar 4:1
finenessratio:

{table TBD}

General Shape - Many of the references contain empirical data comparing the drag characteristics of
various nose shapesin different flight regimes. The chart below, from reference 4, seems to be the most
comprehensive and useful compilation of data for the flight regime of greatest interest. This chart
generally agrees with more detailed, but less comprehensive data found in other references (most notably
the USAF Datcom).
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Comparison of drag characteristics of various nose shapesin the transonic-to-
low Mach regions. Rankings are: superior (1), good (2), fair (3), inferior (4).

Many high-power and amateur rockets are striving to accomplish the goa of “Mach-busting”. Therefore
their greatest concern is flight performance in the transonic region from 0.8 to 1.2 Mach, and nosecone
shapes should be chosen with that in mind. Although datais not available for many shapesin the transonic
region, the table clearly suggests that either the Von Karman shape, or Power Series shape with n =%
would be preferable to the popular Conical or Ogive shapes, for this purpose.

This observation goes against the often-repeated conventional wisdom that a conical nose is optimum for
a Mach-breaking rocket. | suspect that this belief derives from observations of sounding rockets that
often utilize conical nose shapes, such as the Black Brant 111, for example. Such sounding rockets spend
little of their flight time in the transonic region, accelerating quickly to multiple Mach numbers. When it
decelerates after burnout, the sounding rocket remains at multiple Mach for most of its remaining flight
due to the decreased air density at atitude. At the higher Mach numbers where it spends most of its
flight, a cone then becomes the optimum low-drag shape. Fighter aircraft are probably good examples of
nose shapes optimized for the transonic region, although their nose shapes are often distorted by other
considerations of avionics and inlets. An F16 nose appears to be a very close match to a Von Karman
shape. (What we really need is a nosecone whose shape can be transmorgified in flight to match the
regime - see the Disney movie ‘ The Flight of the Navigator’ for agood example of this concept.)

Note that at present, commercialy available Von Karman nosecones are very rare. If you desire to
fabricate your own nosecones, the VCP program will print any size profile of the Von Karman, or any of
the other shapes, to aWindows printer. (Royaltieswill gladly be accepted, in care of the author.)

Dueto the close visual similarity of the Von Karman shape with a Tangent Ogive, | suspect that some full
size rockets that are reported in documentation to have “Ogive’ nosecones, may actualy have “Von
Karman Ogive’ nose shapes. Without exact measurements, it would be difficult to distinguish between
the two shapesin photographs.



Fineness Ratio - Theratio of the length of
a nosecone compared to its the base
diameter is known as the ‘ Fineness Ratio’; Wave 0.
e.g., anosecone that is 10 inches long and 2 Drag
inches in diameter would have a fineness | Coefficient \
ratio of 5:1. Note that this is sometimes CP ' 0. \
also called the ‘Aspect Ratio’, though that |  Conical

term is usualy applied to wings and fins. Shepe at \
Note also that the term ‘fineness ratio’ is M=14 02

often applied to the entire vehicle, \
considering the overall length and diameter. Ny
The length/diameter relation is also often 01 ~——
called the ‘Caliber’ of a nosecone; the I
previous example would have a caliber of
‘5'. At supersonic speeds, the fineness 0.0
ratio has a very significant affect on nose 1 2 s 4 S
cone wave drag, particularly at low ratios; Nose FinenessRatio fn,

but there is very little additional gain for dimensionless

ratios increasing beyond 5:1. Remember
that as the fineness ratio increases, the wetted area, and thus the skin friction component of drag, is also
going to increase. Therefore the minimum drag finenessratio is ultimately going to be a tradeoff between
the decreasing wave drag and increasing friction drag.

Bluffness Ratio - While most of the nosecone shapesideally come to a sharp tip, they are often blunted
to some degree as a practical matter for ease of manufacturing, resistance to handling and flight damage,
and safety. This blunting is most often specified as a hemispherical ‘tip diameter’ of the nosecone. The
term ‘Bluffness Ratio’ is often used to describe a blunted tip, and is equal to the tip diameter divided by
the base diameter. Fortunately, thereislittle or no drag increase for dight blunting of a sharp nose shape.
In fact, for constant overall lengths, there is a decrease in drag for bluffness ratios of up to 0.2, with an
optimum at about 0.15. A flat truncation of a nose ip is known as a M€ plat diameter, and the drag
reduction effect of a M€ plat truncation is shown in the diagram below. The diagram data are for noses
that have been blunted to different diameters while maintaining a constant overall length (i.e., the ogive
radius or cone angle is adjusted). It is interesting to note that many types of rifle bullets and artillery
shellsfeature M€ plat truncated tips.
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Note that this does not mean that you should immediately chop all of the sharp tips off of your nose
cones! Removing atip decreases the fineness ratio, which resultsin increased pressure drag. However, if
you are limited by materials or tools to a 15” finished nosecone length, for example, then your maximum
fineness ratio is fixed by that length and the base diameter. With such alimit, then using a16” sharp-tip
shape, and blunting the tip to fit the 15" limit will produce a lower drag shape than a 15" sharp tipped
nosecone. Whether by design or coincidence, most commercially-made tangent ogive hobby nosecones
are blunted to a bluffnessratio of about .1.



TRANSONIC EFFECTS ON NOSE CONE CENTER OF PRESSURE AND
NORMAL FORCE

The Barrowman equations are very specific in their assumption that the flight regimeisbelow .5 Mach. In
thisrange it is agood assumption that the nose cone center of pressure and the normal force are constant.
Above this point, however, there are significant changes that should be considered.

TBD

OTHER MEASURATION FORMULAE

Reference Area - CP and drag calculations are always based upon a particular reference areaof a
rocket. That reference areais nearly always chosen to be the area of the base of the nose cone,

whichiss A=p R’ (Exception - a‘bulgy’ secant ogive?)

Fineness Ratio - For any shape, the finenessratio of anose coneisitslength divided by its
diameter. For example, one might speak of a5-to-1 (also written as 5:1) ogive hosecone shape,
meaning that itslength isfive timesits diameter. Thisratio issometimes also called the * Aspect
Ratio’.

L

Ar=—
2R

Volume - When computing volume for purposes of CP calculations, exclude any nosecone
shoulder. When computing volume for mass or density calculations, the shoulder would be

included.
For acylinder: V =pRL=AL
e , L° , . e 0u
ForaTangentOgive V =p &Lr - —- (r - R)r sn =0
& 3 rog
h RZ + L2
r =
where, SR
For a.Cone V= p R’L AL
or aConel 3 3
p R’L AL _
For a Parabola: V = > = > (Power Series, n = .5)
, 2pR°L  2AL , _
For an Ellipse: V = = (prolate hemispheroid)

3 3



For al others, numerical ly integrate the volume of aconical frustrum over the length of the
shape:

v=E R+ R +RR)

where: Ry and R, are the forward and &ft radii, and histhe height, of the frustrum.

Wetted Area - The wetted areaisthe total surface area of the nosecone shape that is exposed to the
airflow. Thisdoesnot include the base areaor the area of any shoulder section. Thewetted area
vaueisused in drag cadculations.

For acylinder: A« =2pRL (Does not include face.)

~

ForaTangent Ogive:. A, = Lp e/ — sin’ g—— L(r - R)E gives

a
neg?
R+
here, ' =—(—
where, R
For aCone: A, =pRVR+L? 2pi? Nope, this looks ok.
pR’ | ad+epl
5 ee e & e% L?- R?
For an Ellipse: A =pL" + > where: € = —
half of this?

For al others, numeri cally integrate the surface area of aconica frustrum over the length of
the shape:

s=p(R +R)y(R- R+

where; Ry and R, are the forward and &ft radii, and histhe height, of the frustrum.

Mass For any homogenous solid shape, the massis simply the volume times the density of the
material. But it getsinteresting when the shape is hollow, as most hobby nose cones are.

Numerically integrate the volume of an annular conical frustrum:;

V =pht(R +R, +t)
where; Ry and R, are the forward and &ft radii, h isthe height, and t isthe wall thickness
of the hollow frustrum. (Assuming that the thickness remains constant over the height of
the frustrum.) When either radiusislessthan thewall thickness (as would be the case

near the tip of the nose cone), the equation for volume of a solid frustrum would be
used.

Note that the mass of any nose cone shoulder should be similarly calculated and included. For
this, the equation for volume of ahollow cylinder might be useful:

Vv =pLt(2R - t)



where: Rsisradius, t isthe wall thickness, and Lsis the length of the shoulder.

Lateral Area- Thisvalue can be used for CP estimates using the center-of-lateral area method, in
cases where the Barrowman CP does not apply. Aiaristhe latera area, and Xat is the distance from
the base of the figure to the center of lateral area of that figure.

L
For a Cylinder: A; =2RL X at :E
L
For aCone: Aat =RL )(laI :§
: _pRL AL
For an Ellipse: Ay = X _5

For dl others, numerically integrate the lateral areaof aconical frustrum over the length of the

shape:
, \ ném o (R R)Y
e (R-R)u 8 3§
A, =heéR, +———10 Xy =
6 2 g (R +R)

where: Ry and R, are the forward and &ft radii, and histhe height, of the frustrum.

Center-of-Gravity Solid/Hollow/Shoulder? Material Density - show how by numerica
integration

Inertial Moments Solid/Hollow/Shoulder? Material Density - show how by numerical
integration. Rotational and Longitudinal.
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